
Pergamon 

I,,(. J. Hear ~nss Tronsjer. Vol. 38, No. 9, pp. 1627-1636, 1995 
Copyright :o 1995 Elsevier Saence Ltd 

Pnnted in Great Britain. All rights reserved 
0017-9310195 %9.50+0.00 

0017-9310(94)00274-6 

Prediction of transient oscillating flow in 
Czochralski convection 
HYUNG JIN SUNG and YOUNG JEAN JUNG 

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 
Yusong-ku, Taejon, 305-701, Korea 

and 

HIROYUKI OZOE 
Institute of Advanced Material Study, Kyushu University, Fukuoka, 816, Japan 

(Received 24 March 1994 and injinalform 11 Augusi 1994) 

Abstract-A numerical study was made of transient oscillatory flow modes in Czochralski convection. The 
temperature oscillation was computed over a broad range of the mixed convection parameters, 
0.132 < Ra/Pr Re2 < 1.303. This encompasses the buoyancy- and forced-dominant convection regimes. 
The computed period of oscillation was shown to be in excellent agreement with the relevant experimental 
results. Parametric studies were performed, which led to an understanding of the transition mechanism. 
Computational results were presented to disclose oscillating flow patterns and thermal fields. The influences 
of melt level and of the size of crystal rod on the onset of oscillation were examined. The effect of crucible 
rotation (Ret) was also evaluated. The oscillatory flow modes were analyzed in detail for a realistic, low 

value of Pr. 

1. INTRODUCTION 

Technology advancement for growing single crys- 
tals has led to crystals of high degrees of purity. A 
sophisticated electrical circuit can be made by precise 
patterns of diffusible n-type and p-type dopants to 
yield numerous elements within a chip of single crystal 
silicon. The majority of single crystals are produced 
in industry by the Czochralski process. Typically, a 
cylindrical ingot of a single crystal is grown from a 
seed crystal which is held at the tip of the rotating 
pull-rod. The growth of a single crystal basically 
involves the process of solidification by cooling of 
the crystal ingot. The crucible is rotated for various 
reasons. 

In the Czochralski process, convection in the melt 
is the central issue ; convection is driven by the buoy- 
ancy, the thermocapillary force on the melt surface, 
and rotations of the crystal and the crucible, to name a 
few. The interplay of these forces renders the problem 
extremely complex. Inhomogeneity stemming from 
varying impurity concentrations, which is customarily 
known as the growth striation, is generated in the 
crystal when the growth conditions are not time- 
invariant. These striations affect significantly the qual- 
ity of the crystal, and microdefects in Czochralski 
silicon crystals are detrimental to the electric proper- 
ties of the device. Solute striation is undesirable in 
semiconductors because it results in fluctuations in 
resistivity along the length of the crystal. The present 
study aims to examine the phenomena of oscillations 

in convection. The purpose is to explore possible link- 
ages between these convective oscillations and the 
resulting striations in the crystal. 

A perusal of the relevant literature reveals that the 
problem of impurities, i.e. growth striations during 
solidification, has been treated extensively in a large 
number of theoretical and experimental studies [l- 
lo]. Among others, Witt et al. [5, 61 investigated the 
nature of impurity striations in InSb by interference 
contrast microscopy. They found that the period of 
temperature fluctuations in the melt is correlated with 
the striations in the solidified sample. Chedgy and 
Hurle [3] also demonstrated the correlation between 
the waveform of the temperature fluctuations and the 
spacing of the solute striations. The origin of these 
growth rate fluctuations was attributed mtinly to 
short time-temperature variations at the growth inter- 
face, which were caused by rotation of the growing 
crystal in thermally asymmetric surroundings [5]. In 
the absence of seed rotation, the thermal asymmetry 
was found not to lead to periodic fluctuations of dop- 
ant concentration. As addressed by Munakata and 
Tanasawa [ 111, however, temperature oscillations are 
inherent in the Czochralski system. Shirai [fl] made 
experimental investigations on the relation between 
growth conditions and oxide precipitates by X-ray 
topography, where striations were closely correlated 
to oxide precipitates. It was observed that oxide pre- 
cipitates were formed at very high densities in crystals, 
which were grown by introducing temperature oscil- 
lations. 
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NOMENCLATURE 

g gravitational acceleration M’ dimensionless axial velocity 
H crucible height component 
Ma Marangoni number, &s/aTATH/pa z dimensionless axial space coordinate. 
NU Nusselt number 
Pr Prandtl number, V/E Greek symbols 
Rc crucible radius thermal diffusivity 
Rs crystal radius ; coefficient of thermal expansion 
Ra Rayleigh number, /lgATH’/c(v 0 dimensionless temperature 
Re rotational Reynolds number of crystal, fi viscosity 

Q,H’/V v kinematic viscosity 
Ret rotational Reynolds number of P density 

crucible, R,H’/v 
r dimensionless radial space coordinate ; 

surface tension 
meridional stream function 

T temperature Qc crucible rotation rate 
t dimensionless time coordinate 0, crystal rotation rate 
u dimensionless radial velocity w vorticity, o/r = c?w/& - hi/&. 

component 
1’ dimensionless azimuthal velocity Superscript 

component * dimensional variable. 

Studies on the dynamic patterns of convection in numerical solutions were sought to depict the axi- 
a Czochralski melt are numerous. Whiffin et al. [7] 
observed the rotaiional flow patterns on the surface 
of molten bismuth silicon oxide and reported the tran- 
sition of flow modes with a change in the rotational 
rate. Jones [lo] investigated the details of temperature 
oscillation in a model Czochralski melt. Ostrach [9] 
pointed out the role of thermocapillary action on the 
temperature fluctuations. Recently, Munakata and 
Tanasawa [1 1] made experimental and numerical 
studies on the oscillatory transient flow in a Czo- 
chralski model. The influences of the Prandtl number 
and the Rayleigh number on the onset of oscillatory 
flow were discussed. They clarified that oscillatory 
flows are essential characteristics in Czochralski con- 
vection system, and they are the major cause of stri- 
ations. Ozoe et al. [12] carried out flow visualization 
and temperature fluctuation measurements for the 
Czochralski bulk flow using silicone oil. They found 
a close correlation between the flow modes and the 
time period of temperature fluctuation. A time period 
of temperature fluctuation was clearly displayed by 
means of a color visualization technique (liquid crys- 
tals). 

With a view toward extending the preceding 
numerical and experimental efforts [ 11, 121, in the 
present study a systematic numerical investigation was 
made to delineate the dynamic transition mechanism 
of flow modes in Czochralski convection. In order 
to strengthen the previous results of Munakata and 
Tanasawa [ll], attention was directed to unsteady 
flow modes which were thought to be relevant to the 
time period of temperature oscillation. In an effort to 
understand the transition mechanism, comparisons 
were made with the experimental results of Ozoe ef 
a/. [12]. For the flow geometry of present concern, 

symmetric flow in cylindrical geometry. The combined 
effects of thermal convection, characterized by the 
Rayleigh number (Ra), and of forced convection. 
denoted by the rotational Reynolds number (Rc), on 
the bulk flow characteristics were scrutinized over a 
broad range, 0.132 Q Ra/Pr Re* < 1.303. Parametric 
studies were performed to deepen the understanding 
of transitional striation mechanism. The influence of 
the height of melt level and of the size of crystal rod 
on the onset of oscillatory flow was examined. In 
addition, the onset of oscillatory flow in realistic crys- 
tal growth conditions was examined. These endeavors 
will reinforce the earlier findings [I I] and add new 
interpretations of the oscillating modes and transition 
mechanisms. 

2. FORMULATION AND NUMERICAL SCHEME 

In order to formulate the Czochralski convection 
problem, we consider an axisymmetric flow in cyl- 
indrical geometry. The growing crystal is pulled very 
slowly from the center of a rotating crucible, and 
the vertical motion of the crystal is assumed to be 
negligible. The rotation speed of crystal is relatively 
low, and the free-surface of the melt is assumed to be 
planar. A schematic diagram of the model is shown 
in Fig. 1. 

For the present rotationally symmetric flow, it is 
advantageous to introduce the vorticity w and the 
corresponding meridional stream function ($), which 
are defined as 

w aw au ~=__- 
r & a2 (1) 



Transient oscillating flow in Czochralski convection 1629 

Fig. 1. Schematic diagram of the model. 

1 a* 1 ati 
u= _-- 

r aZ 
J,$,=-- 

r ar (2) 

where the components (u, u, w) denote the radial, azi- 
muthal and axial velocities in the cylindrical coor- 
dinate system. 

The governing equations are 

Ra ae 21- ar au 
+ ----_r-_--+- 

Pr Re’ ar r2 aZ r (3) 

g+- _ w-) + aw-) 
ar az 

=A[r$(ijJJ+$]-T (4) 

do 1 a(rd3) atwe) 
cir+;av+ -=$jj-[~~(r~)+$] r;z 

where I represents the swirl velocity, i.e. I = ru. In 
the above, the equations have been made dimen- 
sionless by adopting the following reference quan- 
tities : 

(r,z) = (r*,z*)/H 

f = t*(Q,) 

(u, v, w) = (u*, v*, w*)/R,H 

0 = V- Tc)I(T, - Tc) 

in which the asterisks indicate the dimensional 
counterparts. Time was non-dimensionalized by 
selecting Q,, where Rs is the rotational angular velocity 
of the crystal rod. Here fit represents the rotational 
angular velocity of the crucible. The melt height is H. 
The following non-dimensional parameters emerge : 

Re = Cl,H’/v rotational Reynolds number ofcrystal 

Ret = RcHZIv 

rotational Reynolds number ofcrucible 

Ma = gTATH/pct Marangoni number 

Pr = v/a Prandtl number 

Ra = fig(T” - 7’,)H3/av Rayleighnumber. 

The temperature at the growth interface is specified 
as the crystalline melting point, and the wall surface 
temperature of crucible is set at a fixed value [ 131. 
Since no externally applied tractions act on the free 
surface, the mechanical boundary conditions on that 
surface are determined entirely by thermocapillarity. 
Because of axial symmetry, it is assumed that 
the normal derivative of swirl vanishes on the free 
surface [14]. 

The boundary and the interfacial conditions are 
written as 

z=O,O<r< R,IH: 

$=O f$=g=O r=$r* 0 = 1 (7) 
S 

z=1,O<r<R,IH: 

$=O $=f$=o rrrl 0~0 
z (8) 

z= 1,R,IH<rx RJH: 

I)=0 

r=O,O<z< 1: 

$=o w=or=O fj=O (10) 

r = Rc/H, 0 -c z < 1: 

The above system of equations was solved by 
employing a finite-difference numerical scheme. All 
the computations were performed on 40 x 80 uniform 
grid network for high Prandtl number flow, and 
120 x 120 non-uniform grid for low Prandtl number 
flow. The Crank-Nicolson scheme was adopted for 
the unsteady terms. For the convective terms, the 
HLPA (Hybrid Linear Parabolic Approximation) 
scheme was utilized [ 151. The initial conditions were 
the solutions of purely natural convection, i.e. the case 
when the crucible and crystal were stationary. The 
ADI (Alternating Direction Implicit) solver was 
employed in numerical computation. The com- 
putations were implemented on an HP-715 work- 
station, and a typical computer CPU time for high 
Prandtl number flows was approx. 10 h for one set 
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Table 1. Experimental results of Ozoe ef al. [12] ; Ru = 
1 694 600, Pr = 4580 (silicon oil) 

Re RalPr Re’ t, [s] R [SC’] r,n T,, [“Cl 

16.8 1.303 120 0.848 101.8 24.1 
20.0 0.929 156 1.005 156.1 25.9 
26.2 0.539 191 1.319 252.0 26.4 
40.6 0.225 126 2.042 257.0 28.0 
53.0 0.132 116 2.670 310.0 27.5 

of calculations. Convergence was declared when the 
maximum changes in dimensionless values between 
two successive iterations were less than 10e6. Several 
trial calculations were repeated to monitor the sen- 
sitivity of the results to the grid size, and the outcome 
of these tests was satisfactory. 

3. RESULTS AND DISCUSSION 

Before proceeding further, it is important to ascer- 
tain the reliability and accuracy of the present simu- 
lation. Toward this end, two illustrative benchmark 
tests have been made by utilizing the present numeri- 
cal code, i.e. the problem of natural convection in a 
square cavity [ 161 and the spin-up problem of Pao [ 171. 
It should be noted here that the present computational 
results were found to be in excellent agreement with 
the results in the literature. 

0.6 

4 

0.4 

1’ ” ” ” ’ ” 

In order to predict the transient oscillating flow 
mode in Czochralski convection, we adopted the 
experimental results of Ozoe et al. [ 121 as the reference 
measurements. Their experiment was carried out for 
various values of the rotational Reynolds number 
(Re), for one set of the Rayleigh number (Ra = 

1694600), the Prandtl number (Pr = 4580) and the 
Marangoni number (Ma = 1.57 x 103). Experimental 
conditions and corresponding results are summarized 
in Table 1, where t, denotes one period of the ther- 
mocouple output and T,, represents the time-averaged 
temperature of thermocouple output at 30 mm below 
the center of the rotating rod. The height of melt H 
was 100 mm in their experiment. The dimensionless 
mixed convection parameter, which is denoted as 
Ra/Pr Re’, indicates the relative importance of natural 
and forced convection. 

0.6 
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3 
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Figure 2(a)-(e) shows the experimental and numeri- 
cal transient temperature oscillations at the position 
(Y, z) = (0.0,0.7) for the above five cases. It is encour- 
aging that the present numerical results are in broad 
agreement with the experimental data. Although the 
amplitude of temperature oscillation is slightly over- 
predicted in some cases, the prediction of the period 
is consistent with the experiments. 

Now, the present simulation is inspected in detail 
in Fig. 2(a) for the case of Ra/Pr Re2 = 1.303, where 
the buoyancy effect is dominant. It is seen that the 
general trend of the transient field is captured well, 
but the absolute values of oscillations are predicted 
less satisfactorily. As time elapses, the temperature 

Fig. 2. (a) Temperature oscillation in the melt at (r. 2) = (0.0, 
0.7) for Ra/Pr Re2 = 1.303, Re = 16.8. The solid line denotes 
the present prediction and the dotted line denotes the exper- 
imental results ofOzoe et al. [12]. (b) Temperature oscillation 
in the melt at (r.2) = (0.0, 0.7) for Ra/Pr Re’ = 0.929. 
Re = 20.0. (c) Temperature oscillation in the melt at 
(r, ;) = (0.0,0.7) for Ra/Pr Re* = 0.539, Re = 26.2. (d) Tem- 
perature oscillation in the melt at (r,z) = (0.0, 0.7) for 
Ra/PrR2 = 0.225, Re = 40.6. (e) Temperature oscillation 
in the melt at (r,z) = (0.0, 0.7) for Ra/PrRe’ = 0.132, 
Re = 53.0: temperature oscillation in the extended time 
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Fig. 2--continued. 

oscillation is gradually attenuated and it eventually 
vanishes, i.e. the critical state for the onset of oscil- 
lation flow is reached [l 11. However, for the value of 
Ra/ Pr Re’ = 0.929, good agreement between exper- 
iment and computation is seen in Fig. 2(b). As 
Ra/Pr Re* decreases, i.e. the relative importance of the 
buoyancy weakens, the temperature oscillations are 
more vigorous. A closer inspection of the time history 
in Fig. 2(b) reveals that the temperature rises gradu- 
ally and afterwards it drops rapidly. As explained by 
Ozoe et al. [12], steep temperature drops are associ- 
ated with a quick descent of cold plume, and the 
subsequent gradual reheating is caused by the recircu- 
lating fluid. 

The result for Ra/Pr Re’ = 0.539 is illustrated in 
Fig. 2(c). The effect of the forced convection due to 
rotation is comparable to the effect of the buoyancy 
force. As a result, the temperature oscillations are 
seen to be in a more organized pattern. As Ra/Pr Re* 
decreases, it is found that both the period t, and the 
time-averaged temperature T,, increase. 

Figure 2(d) shows transient temperature oscil- 
lations at Ra/Pr Re2 = 0.225, where the forced con- 
vection dominates the buoyancy effect. The tem- 
perature oscillations are slightly irregular, which is 
due to the higher rotational speed of the top rod. The 
tendency toward the irregularities in the temperature 
oscillation was also detected by Ozoe et al. [12]. They 
measured the period of irregular temperature fluc- 
tuations in a manner similar to the general way to 
determine the oscillation period. However, a careful 
inspection indicates that the inherent regular oscil- 
lation period exists. The inset of Fig. 2(e) for 
Ra/Pr Re2 = 0.132 shows the regular oscillation in the 
extended time history. In order to look into the regular 
pattern, the temperature oscillation at a different 
location inside the melt, i.e. (r,z) = (0.3,0.9), is dis- 
played in Fig. 3. The regular one-period is clearly 
illustrated and it is much larger than the traditional 
period of Ozoe et al. [12]. Thus, it can be noted that 
the sophisticated regular motion is inherent to the 
forced-convection dominant flow regime. However, it 
should be pointed out here that the present exact 
microscopic estimation of time period is not crucial 
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0.4 
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t 

Fig. 3. Typical one period of temperature oscillation at 
(r,z) = (0.3.0.9) for Ra/Pr Re2 = 0.132. Rr = 53.0. 

to predict the macroscopic striations in Czochralski 
growth. 

The dimensionless time periods t, are plotted 
against RalPr Re* in Fig. 4. As discussed earlier, excel- 
lent agreement between experiment and computation 
is seen. However, the discrepancy at RajPr Re* = 
0.132 is attributed to the aforestated factor. As addressed 
by Ozoe et al. [12], the critical point (Ra/Pr Re2)c, at 
which the curve changes its gradient from positive 
to negative, is located at about (Ra/Pr Re’)c = 0.4. 
At larger values of Ra/Pr Re* than the critical value. 
the buoyancy-dominant flow regime exists, while the 
forced-convection dominant regime prevails in the 
region where Ra/Pr Re2 is less than the critical value. 
The numerical results show that the onset value of 
oscillatory flow is smaller than about Ra/Pr Re* = 1.3. 
Beyond this onset state, the period of temperature 
oscillation exists, but the envelope of the temperature 
oscillation eventually decays. It is evident that this 
onset point should exist, because a limiting cas is the 
case of non-oscillating pure natural convection. 

The isolines of meridional stream function (I/I) and 
temperature (T) are illustrated in Fig. 5. The com- 
puted isolines pertaining to the case of Ra/Pr Re’ = 
0.929 are exhibited in Fig. S(a), where the buoyancy 
effect outweighs the forced convection effect. As time 
progresses, it is clearly seen that a cold plume from 
the edge of the rotating rod descends periodically to 

600 - 

500 - k ?????? present 
: 
: 

0 0 0 experiment [12] 

400 - : 
: 
'9 

3300 - 4 $8 

200 - . . 
'.. 

. .._ 
100 - “-a__ 

-----____ --___ 

o- 
0.0 0.5 1.0 1.5 2.0 2?5 

Ra/PrR: 
Fig. 4. The dimensionless time period t, of an oscillbting flow 

as a function of RalPr Re’. 
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t=zo t=40 t=60 t=80 t=lOO t=lZO t=l40 

natural t=O t=40 t=80 t=120 t=160 t=200 t=240 
Fig. 5. (a) Contour plots of stream function (G) and isotherms (T) in the meridional plane, and of isotherms 
in the horizontal plane at z = 0.9 for Ra/PrRe’ = 0.929, Re = 20.0. (b) Contour plots of stream function 
($) and isotherms (T) in the meridional plane, and of isotherms in the horizontal plane at z = 0.9 for 

Ra/PrRr’ = 0.225, Re = 40.6. 

the bottom center of the rotating rod. The buoyancy 
flow ascending along the crucible wall dominates the 
cold plume. Near the wall the cold flow is concentrated 
along the periphery of the rotating rod due to the 
Ekman layer, and the cold plume descends alone to the 
bottom center. Consequently, the periodic oscillatory 
motion sustains a regular pattern. The corresponding 
horizontal view of temperature contour at z = 0.9 
exhibits a periodic change in the size of the descending 

cold plume. Here, the time origin (t = 0) was set 
arbitrarily. 

In the forced-convection dominant regime (Ru/ 
Pr Re2 = 0.225), as shown in Fig. 5(b), a cold plume 
starts to descend from the periphery of the rotating 
rod in a balloon shape. As time elapses, this balloon- 
shaped fluid is getting colder due to the cold bottom 
plane of the top cylinder. The hot fluid under this 
balloon-shaped fluid breaks upwards and flows in the 
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Fig. 6. The effect of aspect ratio (R,/H) on the critical state 
of oscillation for Ra = 1694 600 and Pr = 4580. 

central region below the rotating cold crystal. Since 
the buoyancy effect is not substantial, the forced con- 
vection due to the rotation of the cylinder rod domi- 
nates the transient flow mode. As a result, it leads to 
irregular temperature fluctuations in the melt. These 
phenomena were also observed by Ozoe et al. [12], and 
were interpreted as being attributable to the higher 
rotational speed of the top plate. 

Much can also be learned about the shape of the 
growth interface, which is closely connected to the 
transient melt flow pattern. As is evident in Fig. 5(a), 
the streamline pattern onto a meridional plane illus- 
trates a large recirculating cell, where the flow is 
entrained from the crucible surface. The distributions 
of oxygen and dopant in the grown crystal are affected 
by the flow conditions. Thus, the growth interface 
becomes convex towards the melt in the buoyancy- 
dominant flow regime. In this case, the melt near the 
growth interface in the central part of the growing 
ingot is greatly influenced by temperature oscillations 
of the bulk melt [18]. On the other hand, two recir- 
culating cells in the region close to the growth interface 
are clearly displayed in Fig. 5(b). The cell just beneath 
the crystal rod is due to the crystal rotation, whilst the 
large cell arises from the effect due to the crucible 
heating. The bulk of the available oxygen is taken 
up from the crucible surface, and most of oxygen is 
removed by diffusion in the free surface. Flow inter- 
actions across the dividing stream surface are 
suppressed. Accordingly, the growth interface 
becomes concave, where the melt near the central part 
of the growing crystal is less influenced by the bulk 
melt oscillations. As a consequence, the oscillation 
amplitude becomes small for a concave growth inter- 
face and large for a convex one. 

Although the parameter values in this study are not 
directly relevant to a practical crystal growth system, 
it is also important to find out the onset state of 
oscillation between the Reynolds number of crystal 
rod (Re) and the crucible rotational Reynolds number 
(Re,). Furthermore, the height of the melt level 
decreases gradually in a realistic Czochralski crystal 
pulling. The computed results of onset oscillation are 
shown in Fig. 6, which were obtained by changing Re 

and Ret under the same Rayleigh number (Ra = 
1694 600). The negative values of Re, indicate the cases 
of counter-rotation and the positive values represent 
the cases of co-rotation of the crystal rod and the 
crucible. It should be noted that considerable amounts 
of trial-and-error computations were devoted to map 
out this figure by determining the sensitive boundary 
between oscillation and non-oscillation. 

It can be recognized that the upper region of the 
critical curve of Fig. 6 represents the region of tem- 
perature oscillation and the lower region indicates the 
non-oscillation striation-free region. In this sense, the 
enlargement of the lower region is more desirable, if 
possible, in actual crystal growth. The lower region 
on the left of the vertical line (Re, = 0) is shown to 
be wider than that on the right. This reflects that the 
counter-rotation is more frequently used than the co- 
rotation in the practical crystal growth process. As to 
the effect of the melt aspect ratio, where the ratio is 
defined as the crucible radius to the melt height, the 
possibility of striation-free in the case of the aspect 
ratio (1 : 2) tends to be higher than that of the aspect 
ratio (1 : 1). The onset curve of the aspect ratio (1 : 1) 
shows a sudden turn to the left with increasing Re, 
for Re, > 0. The onset curve actually forms a closed 
curve because, in the case of high Re, the flow regime 
is forced-convection dominant and the flow does not 
oscillate in the limiting case. In order to obtain a 
striation-free crystal in the aspect ratio (1 : I), the 
increase of \Re,J is more recommendable. If the cru- 
cible is rotated more rapidly (Ret is increased), the 
fluid receives stronger centrifugal force and thus less 
drag from the rotating crucible. If this is the case, the 
dissolution of oxygen from a crucible will be reduced. 
The effect of the melt height can be analyzed by the 
fact that, as the melt height (H) increases, it may be 
expected to enhance the effects of buoyancy (Ra), 
and it results in strengthening the buoyancy-dominant 
convection regime. 

Much effort has been given to producing large-sized 
crystals to increase the productivity of semiconductors 
in industry. Thus the crystal radius is enlarged from 
4/8 to 5/8, where the value indicates the ratio of the 
crystal radius to the crucible radius. The effect of the 
crystal radius on the onset oscillation is displayed in 
Fig. 7. It is seen that the global feature moves down- 
ward in the map with increasing crystal radius. As 
anticipated, the enlargement of crystal size gjves rise 
to more striations because the region of oscillation is 
more widened. 

The influence of crucible rotation (Re,-) on the tem- 
perature oscillation is examined in Fig. 8. As seen in 
the prior oscillating conditions in Figs. 6 and 7, where 
the aspect ratio was 1 : 2 and the crystal radius was 
4/8, the crucible rotation was varied from counter- 
rotation to co-rotation within the oscillatiou region. 
The horizontal trajectories are displayed in Fig. 8(a) 
for three crystal rotations, i.e. Re = 22.0, 26.2 and 
30.0. The dimensionless time periods (tJ are plotted 
against the crucible rotational Reynolds number 
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Fig. 7. The effect of crystal radius (R,) on the critical state 
of oscillation for Ra = 1 694 600 and Pr = 4580. 
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Fig. 8. The effect of crucible rotation (Ret) on the tern 
perature oscillation (t,, A0) for three crystal Reynolds 

numbers, i.e. Re = 22.0, 26.2 and 30.0. 
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(Re,) in Fig. 8(b). It is seen that the maximum time 
period (tp,man) exists around Rr, M 0, as Re decreases. 
where these maxima for three cases are slightly tilted 
towards the co-rotation direction of crucible rotation. 
As addressed in the critical value, (Ra/Pr Re’), in 
Fig. 4, recall that t, increases in the forced-dominant 
convection regime rather than in the buoyancy-domi- 
nant convection regime. It is known that, as jRe,l 
increases, the buoyancy effect is strengthened due to 
thermal currents along the side walls [19]. The effect 
of crucible rotation acts as a centrifuge and may be 
expected to enhance the buoyancy effect. Conse- 
quently, t, decreases closer to the onset boundaries, 
as 1 ReJ increases. The effect of Re, on the amplitude 
of temperature oscillation (A@ is exhibited in Fig. 
8(c). As can be seen in this figure, the oscillation 
amplitude (AQ) near the crystal melt interface at 
(r, z) = (0.0, 0.9) is not heavily influenced by the cru- 
cible rotation, which is consistent with the exper- 
imental findings of Kuroda and Kozuka [ 181. 

It is known that silicon oil is frequently used in flow 
visualization experiments due to its transparency and 
high Prandtl number (Pr = 4580). In a realistic crystal 
growth process, however, the Prandtl number is very 
low. For example, Pr = 0.068 for the case of gallium 
arsenide (GaAs). Actual computations have been 
performed under the conditions Pr = 0.068, 
Ra = 1.0x IO’, Ma = 0.0, Re = 5.0x lo’, Rc = H, 
Rs = 0.5R,, Rc = 0.0, which were adopted in Muna- 
kata and Tanasdwa [ 1 I]. Since the Reynolds number is 
high, the Ekman suction near the wall is strengthened 
and then the Ekman layer becomes very thin 
(- Re-I’*). Thus, the grid stretching near the wall 
should be made to account for the Ekman layer res- 
olution (120 x 120). The heat transfer is augmented 
by the effect of low Prandtl number. The meridional 
isotherm contours, as illustrated in Fig. 9, are quite 
diffused and they fill much of the bulk of the interior. 
Inspecting the global features of isotherms, the flow 
mode is shown to be closer to the buoyancy-dominant 
regime, as classified in the preceding criteria of Fig. 2. 
The upper small cell may be generated by the tip 
vortex due to crystal rotation, which causes the cen- 
trifugal acceleration to yield pressure variations [20]. 
This reflects the cluster of isotherms near the periphery 
portion of the crystal rod. The lower cell is formed 

Fig. 9. Contour plots of meridional stream function ($) and isotherms (T) for Ra/Pr Re2 = 0.0588, 
Pr = 0.068. 
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Fig. 10. Temperature oscillation in the melt at (r, z) = (0.0, 
0.7) for Ra/Pr Re* = 0.0588. 

due to thermal convection currents in the melt, which 
is confined to the areas adjacent to the crucible side 
walls during one period. As the rotational Reynolds 
number increases (Re = 5.0 x 103), the viscous Ekman 
layers become thinner closer to the crucible bottom 
wall as well as the wall of crystal rod. Thus the inviscid 
part in the interior is enlarged, which gives rise to a 
Taylor-Proudman column due to the corresponding 
rotation effect. The non-mixing Taylor-Proudman 
column is clearly seen along the rotating axis, as 
shown in Fig. 9 [20]. The temperature oscillation for 
the crystal growth process is exhibited in Fig. 10, 
where the measuring location is (r, z) = (0.0,0.7). An 
inspection of the temperature oscillation indicates that 
the temperature is raised gradually and then dropped. 
This feature is very similar to the preceding case of 
Fig. 2(b), where the buoyancy effect is dominant over 
the rotation effect. 

4. CONCLUSION 

The computational results disclose the prominent 
features of transient oscillatory flow modes in 
Czochralski convection. The objective is to depict the 
qualitative character of striation in the crystal associ- 
ated with transient temperature oscillations in the 
melt. The time period of temperature oscillations 
beneath the crystal rod shows excellent agreement 
with the experimental findings of Ozoe et al. [12]. 
Two flow modes, which are the buoyancy-convection 
dominant mode and forced-convection dominant 
mode, are clearly displayed over the range, 0.132 < 
RajPr Re2 < 1.303. For a buoyancy-convecion domi- 
nant flow mode, one large recirculating cell exists 
where the flow is entrained from the crucible wall. The 
growth interface becomes convex towards the melt. 
For a forced-convection dominant flow, two cells in 
the region close to the growth interface are seen. Due 
to the dividing stream surface, flow interactions are 
much suppressed. Thus, the growth interface becomes 
concave. 

Parametric studies are performed in order to 
acquire an understanding of the transition mech- 

Reynolds number of crystal rod (Re) and the crucible 
rotational Reynolds number (Ret) is investigated. 
The effect of the crystal radius on the onset oscillation 
is also scrutinized. As anticipated, the enlargement of 
crystal size gives rise to more oscillation and striation. 
The influence of Re, on the temperature oscillation 
(tJ is substantial. As 1 Rec( increases, t, decreases and 
the period t, has a maximum in the interior region. 
Realistic crystal growth is also considered in the 
present study. Due to the thinner Ekman layer near the 
crystal interface, the non-mixing Taylor-Proudman 
column is seen along the rotating axis. 
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